Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Solve: $(x+y)(dx-dy)=dx+dy.$[Hint:Substitute x+y=z after separating dx and dy]

$\begin{array}{1 1}(A)\;c\;e^{\large y+x}=x+y \\(B)\;c\;e^{\large x-y}=x+y \\(C)\;c\;e^{\large y-x}=x+y \\(D)\;c\;e^{\large y-x}=x-y \end{array} $

Can you answer this question?

1 Answer

0 votes
  • A linear differential equation of the form.$ \large\frac{dy}{dx}$$=(x+y)$ can be solved by substituting $x+y=z$ and $\large\frac{dy}{dx}=\frac{dz}{dx}$$-1$
  • Then the variable can be seperated and integrated.
  • $ \int \large\frac{dx}{x}$$=\log x$
Given $(x+y)(dx-dy)=dx+dy$
This can be written as
=> $ dx(x+y-1)=dy(x+y+1)$
Let $x+y=z$ on differentiating w.r.t x we get
or $ \large\frac{dy}{dx}=\frac{dz}{dx}-1$
Now substituting in equ (1) we get,
On seperating the variables we get
On integrating we get
$\large\frac{1}{2}\bigg[\int \frac{z}{z} $$dz-\int \large\frac{1}{z}$$dz\bigg]=\int dx$
=>$\large\frac{1}{2}\bigg[\int $$dz-\int \large\frac{1}{z}$$dz\bigg]=\int dx$
$\large\frac{1}{2}\bigg[$$z-\log z\bigg]=x+c$
$z-\log z=2x+c$
Now substituting for $z=(x+y)$
$y=x+\log (x+y)+c$
or $y-x=\log _e (x+y)$
$c\;e^{\large y-x}=x+y$
answered May 9, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App