Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Solve the differential equation $(1+y^2)\tan^{-1}xdx+2y(1+x^2)dy=0$

Can you answer this question?

1 Answer

0 votes
  • If a linear differential equation is of the form $\large\frac{dy}{dx}$$=f(x),$ then it can be solved by seperating the variables.
  • $ \int \large\frac{dx}{x^2+a^2}=\frac{1}{a} $$\tan ^{-1} \bigg(\large\frac{x}{a}\bigg)+c$
Given $(1+y^2)\tan^{-1}xdx+2y(1+x^2)dy=0$
We can rewrite this as
$2y(1+x^2)dy=-(1+y^2)\tan ^{-1} x dx$
$2 \large\frac{dy}{dx}=\frac{-(1+y^2)\tan ^{-1}x}{(1+x^2)}$
Now seperating the variables we get
$2 \large\frac{dy}{1+y^2}=\frac{-\tan ^{-1}(x)}{1+x^2}$$dx$
Now integrating we get,
$\int 2 \large\frac{dy}{1+y^2}=-\int\frac{\tan ^{-1}(x)}{1+x^2}$$dx$
Consider $ \large\frac{dy}{1+y^2}$
This is of the form $ \int \large\frac{dx}{x^2+a^2}=\frac{1}{a} $$\tan ^{-1} \bigg(\large\frac{x}{a}\bigg)$
Hence $2 \int \large\frac{dy}{1+y^2}$$=2 \tan ^{-1}(y)$
Step 2:
Consider $\int \large\frac{-\tan ^{-1}(x)}{1+x^2}$$dx$
Let $\tan ^{-1}x=t$ on differentiating w.r.t x we get
Now substituting this we get,
$\large\frac{-1}{2} $$\int t.dt$
On integrating we get
$-\bigg[\large\frac{t^2}{2}\bigg]$ substituting for t we get
$ =\large\frac{-(\tan ^{-1}x)^2}{2}$
Now applying this in required solution we get,
$ 2\tan ^{-1}y=\large\frac{-(\tan ^{-1}x)^2}{2}+c$
$ 2\tan ^{-1}y+\large\frac{(\tan ^{-1}x)^2}{2}=c$
Hence the required solution is
$ 2\tan ^{-1}y+\large\frac{1}{2}$$(\tan ^{-1}x)^2=c$
answered May 22, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App