Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The volume of a couridal particle , $\;V_{c}\;$ as compared to the volume of a solute particle , $\;V_{s}\;$ in a true solution could be

$(a)\;\large\frac{V_{c}}{V_{s}} \approx 10^{-3}\qquad(b)\;\large\frac{V_{c}}{V_{s}} \approx 10^{3}\qquad(c)\;\large\frac{V_{c}}{V_{s}} \approx 1\qquad(d)\;\large\frac{V_{c}}{V_{s}} \approx 10^{23}$

Can you answer this question?

1 Answer

0 votes
Answer : $\large\frac{V_{c}}{V_{s}} \approx 10^{3}$
Explanation :
For a true solution , the diameter range is 1 to $\;10A^{0}\;$ , and for colloidal solution , diameter range is $\;10 - 1000 A^{0}\;$ .
Taking lower limits ,
$\large\frac{V_{c}}{V_{s}}=\large\frac{\large\frac{4}{3} \pi r_{c}^{3}}{\large\frac{4}{3} \pi r_{s}^{3}}=(\large\frac{r_{c}}{r_{s}})^{3}$
We know ,
$r_{c}=\large\frac{10}{2}=5A^{0}\qquad \; , r_{s}=\large\frac{1}{2}=0.5A^{0}$
Therefore , $\;\large\frac{V_{c}}{V_{s}}=(\large\frac{5}{0.5})^{3}=10^{3}$
answered Mar 18, 2014 by yamini.v
edited Mar 18, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App