logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Give examples of two functions \(f: N \to N\) and \(g: N \to N\) such that \(g\;o\;f \) is onto but \(f\) is not onto.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • A function $f:A \to B$ is onto if for $ y \to B$ then exists unique $ x \in A$ such that $f(x)=y$
  • We define two function $f:N \to N$ and $g: N \to N$ such that gof is onto $ gof(x)=gof(y)$
Given $g(x)= \left\{ \begin{array}{1 1} x-1 & \quad x > 1\\ 0 & \quad x=1 \end{array} \right.$
Consider $x=1 \in$ Codomain of $g$. It is clear that there exists 2 element $x=1, x=2$ such that $g(x)=1$
Therefore $f$ is not onto
Consider $f(x)=x+1$
$\Rightarrow gof(x)=g(f(x))$ $=g(x+1)$ $=x+1-1 = x$
Since $x \in N;x+1 > 1$
$\Rightarrow gof$ is onto. since for $y \in N$ then exists $x \in N$ such that $gof(x)=y$
answered Feb 28, 2013 by meena.p
edited Mar 20, 2013 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...