Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Integrating factor of the differential equation $\cos x\large\frac{dy}{dx}$$+y\sin x=1$ is:\[(A)\;\cos x\quad(B)\;\tan x\quad(C)\;\sec x\quad(D)\;\sin x\]

Can you answer this question?

1 Answer

0 votes
  • A linear differential equation of the form $\large\frac{dy}{dx}$$+Py=Q$ has a general solution $y e^{\large\int pdx}=\int Q.e^{\large \int pdx}.dx+c$. where $e^{\large \int pdx}$ is the integrating factor (I.F)
  • $\int \tan xdx=\log |\sec x|+c$
$\cos x. \large\frac{dy}{dx}$$+y \sin x=1$
Divide throughout by $\cos x$
$\large\frac{dy}{dx}$$+ y \large\frac{\sin x}{\cos x}=\frac{1}{\cos x}$
But $\large\frac{\sin x}{\cos x}$$=\tan x$ and $\large\frac{1}{\cos x}$$=\sec x$
$\large\frac{dy}{dx}$$+y \tan x=\sec x$
This is a linear differential equation of the form $\large\frac{dy}{dx}$$+Py=Q$
Where $P=\tan x$
The integrating factor is $e^{\large\int pdx}$
$ \int pdx=\int \tan x=\log |\sec |$
Hence $I.F = e^{\large\log |\sec x|}$
But $e^{\large \log x}=x$
Similarly $e^{\large\log |\sec x|}$$=\sec x$
Hence $I.F=\sec x$
The correct option is $C$
answered May 14, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App