Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Solution of the differential equation $\tan y\sec^2x dx+\tan x\sec^2y dy=0$ is \[(A)\;\tan x+\tan y=c \quad (B)\;\tan x-\tan y=c \quad(C)\;\frac{\tan x}{\tan y}=c \quad (D\;\tan x.tan y=c\]

Can you answer this question?

1 Answer

0 votes
  • A linear differential equation of the form $\large\frac{dy}{dx}$$=f(x)$ can be solved by seperating the variables and then integrating it.
  • $\int \large\frac{dx}{x}$$=\log |x|+c$
$\tan y \sec ^2 xdx+\tan x\sec ^2 y dy=0$
This can be written as: $\tan y \sec ^2 x dx=-\tan x \sec ^2 y dy$
Seperate the variables
$\large\frac{\sec ^2 y dy}{\tan y}=-\large\frac{\sec ^2 x dx}{\tan x}$
Put $\tan y=t $ and $\tan x=u$ on differentiating with respect to x we get,
$\sec ^2 ydy=dt$ and $\sec^2 xdx=du$
Substituting this we get,
Integrate on both sides,
$\int \large\frac{dt}{t}=-\int \frac{du}{u}$
$=\log |t|=-\log |u|+\log |c|$
Substitute for t and u,
$\log |\tan y|=-\log |tan x|+\log c$
$\log (\tan y).(\tan x)=\log c$
=>$ \tan x.\tan y=c$
Hence $D$ is the correct answer
answered May 20, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App