Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

The general solution of $e^x\cos y\;dx-e^x\sin y\;dy=0$ is:\begin{array}{1 1}(A)\;e^x\cos y=c & (B)\;e^x\sin y=c\\(C)\;e^x=c\;\cos y & (D)\;e^x=c\;\sin y\end{array}

Can you answer this question?

1 Answer

0 votes
  • If a linear differential equation is of the form $\large \frac{dy}{dx}$$=f(x)$ then it can be solved by seperating the variables and then integrating
Given $e^x \cos y \;dx-e^x \sin y\; dy=0$
Dividing by $e^x$ we get
$\cos y \;dx=\sin y \; dy$
$=>\large\frac{\sin y}{\cos y}$$dy=dx$
(ie)$ \tan y \;dy=dx$
Integrating on both sides we get,
$\int \tan y \;dy=\int dx$
$=> -\log_e |\cos y|=x+c$
$=>\log_e \bigg(\large\frac{1}{\cos y}\bigg)$$=x+c$
$=>e^x=\large\frac{1}{\cos y}+c$
$\cos y.e^x=c$
Hence $A$ is the correct answer
answered May 16, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App