Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

The solution of the differential equation $\Large \frac{dy}{dx}=\frac{1-y^2}{1-x^2}$ is:\begin{array}{1 1}(A)\;y=\tan^{-1}x & (B)\;y-x=k(1+xy)\\(C)\;x=tan^{-1}y & (D)\;\tan (xy)=k\end{array}

Can you answer this question?

1 Answer

0 votes
  • If a linear differential equation is of the form $\large\frac{dy}{dx}$$=f(x),$ then ot can be solved by seperating the variables and then integrating.
  • $\int \large\frac{dx}{x+a}$$=\log |x+a|$
Given $ \large\frac{dy}{dx}=\frac{1-y^2}{1-x^2}$
Seperating the variables we get
$\int \large\frac{dx}{a^2-x^2}=\frac{1}{2a} $$\log \large\frac{a+x}{a-x}$
integrating on both sides,
$\int \large\frac{dy}{(1-y^2)}=\int \frac{dx}{1-x^2}$
$\large\frac{1}{2} $$\log \large\bigg|\frac{1+y}{1-y}\bigg|=\frac{1}{2} $$\log \large\bigg|\frac{1+x}{1-x}\bigg|$$+\log c$
$=>\log \large\bigg|\frac{1+y}{1-y}\bigg|= $$\log 2c \large\bigg|\frac{1+x}{1-x}\bigg|$
$=> \large\frac{(1+y)}{(1-y)}$$=2c \large\frac{(1+x)}{(1-x)}$$ \qquad (Let \;2c=k)$
$=> \large\frac{(1+y)}{(1-y)}=k\frac{(1+x)}{(1-x)}$
Cross mutiplying we get,
$-x+y-xy=(k-1)+k(x-y)-kxy \qquad $[(k-1) is a constant]
But again $k+1$ is a constant
Hence $y-x=k(x-y)+xy$
Dividing throughout by $(x-y)$ we get
Hence $B$ is the correct option
answered May 17, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App