Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

The solution of the differential equation $\cos x\sin y\;dx+\sin x\cos y\;dy=0$ is:

\[(A)\;\frac{\sin x}{\sin y}=c \quad (B)\;\sin x\sin y=c\quad(C)\;\sin x+\sin y=c \quad (D)\;\cos x\cos y=c\]

Can you answer this question?

1 Answer

0 votes
  • If a linear differential equation is of the form $\large\frac{dy}{dx}$$=f(x)$ then it can be solved by seperating the variables and integrating it
Given $\cos x \sin ydx+\sin x \cos y dy=0$
This can be written as
$-\cos x \sin y dx=\sin x \cos y dy$
$=>\sin x \cos y dy =-\cos x \sin y dx$
Now seperating the variables we get
$\large\frac{\cos y dy}{\sin y}=\frac{-\cos x dx}{\sin x}$
Now integrating on both sides,
$\large\int \frac{\cos y dy}{\sin y}=\int \frac{-\cos x dx}{\sin x}$
Put $\sin y=t$ and differentiate it w.r.t y we get $\cos y dy=dt$
Similarly put $\sin x=u$ and differentiate it w.r.t x we get $\cos x dx=du$
Now substituing this we get
Hence $ \int \large\frac{dt}{t}=-\int \frac{du}{u}$
$=\log |t|=\log |u|+\log c$
Substituting for t and u
$\log |\sin y|=-\log |\sin x|+\log c$
$=> \log |\sin y|+\log |\sin x|=\log c$
or $\sin y.\sin x =c$
Hence $B$ is the correct option
answered May 21, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App