logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

If \( A \) is a square matrix, such that \( A^2 = A \) , then \( (1 + A )^3 - 7A \) is equal to:

\[ (A) \: A   \qquad\qquad (B) \: I - A    \qquad\qquad (C)   \: 1   \qquad\qquad  (D) \: 3A   \]
Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $(a+b)^3=a^3+b^3+3ab(a+b)$
Step 1: Given
$A^2=A$
$A^3=A^2.A$
$\;\;\;=A.A$ [given$A^2=A$]
$\;\;\;\;=A^2$
$(1+A)^3-7A=(1+3A+3A^2+A^3)-7A.$
we know that $(a+b)^3=a^3+b^3+3ab(a+b)$
$(1+A)^3=1+A^3+3A(1+A)$
$(1+A)^3-7A=(1+3A+3A^2+A^3)-7A$
Step 2: Replace $A^2=A$
$\;\;\;\;\;=(1+3A+3A+A.A)-7A.$
$\;\;\;\;\;=(1+6A+A^2)-7A.$
$\;\;\;\;\;=(1+6A+A)-7A.$
$\;\;\;\;\;=(1+7A)-7A.$
$\;\;\;\;\;=1.$
Hence (C) is the right option.
answered Mar 19, 2013 by sharmaaparna1
edited Mar 20, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...