Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

The solution of the equation $(2y-1)dx-(2x+3)dy=0$ is\[(A)\;\frac{2x-1}{2y+3}=k \quad (B)\;\frac{2y+1}{2x-3}=k \quad (C)\;\frac{2x+3}{2y-1}=k \quad (D)\;\frac{2x-1}{2y+1}=k \]

Can you answer this question?

1 Answer

0 votes
  • If the linear differential eqation is of the form $\large\frac{dy}{dx}$$=f(x)$, then it can be solved by seperaring the variable and integrating.
  • $\int \large\frac{dx}{x+1}$$= \log |x+1|+c$
Given $(2y-1)dx-(2x+3)dy=0$
Seperating the variables we get,
On integrating we get
$\int \large\frac{dy}{(2y-1)}=\int \frac{dx}{(2x+3)}$
$=>\large\frac{1}{2} $$\log(2y-1)=\large\frac{1}{2} $$\log (2x+3)+\log c$
$=>\log(2y-1)=\log 2c (2x+3)$
$ \large \frac{2y-1}{2x+3}$$=2c$
$ \large \frac{2x+3}{2y-1}=\frac{1}{2c}$$=k\qquad (where \;k=\large\frac{1}{2c})$
Hence $ \large \frac{2x+3}{2y-1}$$=k$
The correct option is $C$
answered May 20, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App