Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

The general solution of the differential equation $(e^x+1)ydy=(y+1)e^xdx$ is

\[(A)\;(y+1)=k(e^x+1) \quad (B)\;y+1=e^x+1+k \quad (C)\;y=log\{k(y+1)(e^x+1)\} \quad (D)\;ylog{\frac{e^x+1}{y+1}}+k\]

Can you answer this question?

1 Answer

0 votes
  • A linear differential equation is of the form $\large\frac{dy}{dx}$$=f(x)$, then it can be solved by seperating the variables.
Step 1:
Given $(e^x+1)y\;dy=(y+1)e^xdx$
Seperating the variables we get,
On integrtaing we get,
$\int \large\frac{y\;dy}{y+1}=\int \large\frac{e^x}{e^x+1}$$dx$
Consider the L.H.S
Add and subtract 1 to the numerator
$\int \large\frac{(y+1)-1}{y+1}$$dy$
On seperating the terms we get,
$\int dy-\int \large\frac{1}{y+1}$$dy$
$=> y-\log(y+1)$
Step 2:
Now Consider R.H.S
$\int \large \frac{e^x}{e^x+1}$$dx$
Put $ e^x+1=t$ On differentiating w.r.t x
$e^xdx=dt$ on substituting this
Hence $\int \large \frac{dt}{t} $$=\log t$
$=\log |(e^x+1)|$
Step 3:
Now combining the terms we get,
$y=\log (y+1)=\log(e^x+1)+\log c$
$y=\log [k(y+1)(e^x+1)]$
Hence the correct option is $C$
answered May 21, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App