Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

The solution of the differential equation $\large\frac{dy}{dx}$$=e^{x-y}+x^2e^{-y}$ is

:\[(A)\;y=e^{x-y}-x^2e^{-y}+c \quad (B)\;e^y-e^x=\frac{x^3}{3}+c \quad(C)\;e^x+e^y=\frac{x^3}{3}+c \quad (D)\;e^x-e^y=\frac{x^3}{3}+c\]

Can you answer this question?

1 Answer

0 votes
  • If a linear differential equation is of the form $\large\frac{dy}{dx}$$=f(x),$ then it can be solved by seperating the variables.
  • $\int e^xdx=e^x+c$
Given $\large\frac{dy}{dx}$$=e^{x-y}+x^2e^{-y}$
This can be written as
On seperating the variables we get
On integrating we get,
$\int e^y dy=\int x^2 dx+\int e^x dx$
Hence the correct option is $B$
answered May 21, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App