Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

The general solution of $\frac{dy}{dx}-y=\sin x$ is

$\begin{array}{1 1} y=2[\sin x+cos x]+ce^{-x} \\ y= \frac{1}{2} [\sin x +\cos x ]+ce^{-x} \\ y=\frac{-1}{2} [\sin x+\cos x]+ce^{-x} \\ y=\frac{1}{2} [\sin x+\cos x]+ce^{-x} \end{array}$

Can you answer this question?

1 Answer

0 votes
  • A linear differential equation of the form $\large\frac{dy}{dx}$$+Py=Q$ has general solution as $ye^{\int pdx}=\int Q.e^{\int pdx}dx+c$
  • Where $ e^{\int pdx}$ is the integral factor (I.F)
  • $\int e^{ax}\sin bx dx=\large\frac{e^{\large ax}}{a^2+b^2}$$[a \sin bx- b \cos bx]$
Step 1:
$\large\frac{dy}{dx}$$-y=\sin x$
Clearly this is a linear differential equation of the form $\large\frac{dy}{dx}$$+Py=Q$
Where $P=-1$ and $Q=\sin x$
$\int pdx=\int -1 dx$
Hence the integrating factor $(I.F)=e^{\int pdx}=e^{-x}$
Now the required solution is
$ye^{\int pdx}=\int Q.e^{\int pdx}.dx+c$
$(ie) ye^{-x}=\int \sin x (e^{-x})dx+c$
Consider $ \int e^{-x} \sin x dx$
Step 2:
We know $\int e^{ax}\sin bx dx=\large\frac{e^{ax}}{a^2+b^2}$$ [a \sin bx-b \cos bx]$
Here $ a=-1$ and $b=1$
Hence $ \int e^{-x} \sin xdx=\large\frac{e^{-x}}{1+1}$$[(-1) \sin x-(1) \cos x]$
$=\large\frac{-e^{-x}}{2} $$[\sin x+\cos x]+c$
Therefore the required solution is
$ye^{-x}=\large\frac{-e^{-x}}{2} $$[\sin x+\cos x]+c$
Dividing throughout by $e^{-x}$
$y=\large\frac{-1}{2} $$[\sin x+\cos x]+ce^{-x}$
Hence the general solution of $\large\frac{dy}{dx}$$-y=\sin x$ is
$y=\large\frac{-1}{2} $$[\sin x+\cos x]+ce^{-x}$
answered May 22, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App