logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

The integrating factor of $\large\frac{dy}{dx}-y=\frac{1-y}{x}$ is__________.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • A linear differential equation of the form $\large\frac{dy}{dx}$$+Py=Q$ has general solution as $ye^{\int pdx}=\int Q.e^{\int pdx}dx+c$
  • Where $ e^{\int pdx}$ is the integral factor (I.F)
Given $ \large\frac{dy}{dx}$$-y=\large\frac{1-y}{x}$
This can be written as
$\large\frac{dy}{dx}$$-y=\large\frac{1}{x}-\frac{y}{x}$
$=>\large\frac{dy}{dx}$$-y+\large\frac{y}{x}=\frac{1}{x}$
or $\large\frac{dy}{dx}$$-y(1-\large\frac{1}{x})=\frac{1}{x}$
Clearly this is of the form $\large\frac{dy}{dx}$$+Py=Q$
Where $P=\large\frac{x-1}{x} $$\qquad \bigg(1-\large\frac{1}{x}\bigg)$
$\int pdx=\int \bigg(1-\large\frac{1}{x}\bigg)$$dx$
$=(x-\log x)$
$e^{\large \int pdx}=e^{x-\log x}=e^x.e^{-\log x}$
$=e^x.\large\frac{1}{x}$
$=\Large\frac{e^x}{x}$
Hence the integrating factor $ \large\frac{dy}{dx}$$-y=\large\frac{1-y}{x}$ is $\Large\frac{e^x}{x}$
answered May 22, 2013 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...