Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

True-or-False: The solution of the differential equation $\large\frac{dy}{dx} = \frac{x+2y}{x}$ is $x+y=kx^2$.

$\begin{array}{1 1} True \\ False \\ cannot be determined \end{array}$

Can you answer this question?

1 Answer

0 votes
  • A homogenous linear differential equation can be solved by putting $y=vx$ and $\large\frac{dy}{dx}$$=v+x \large \frac{dv}{dx}$
  • $\int \large\frac{dx}{1+x}$$=\log |1+x|+c$
This is a homogenous linear differential equation hence this can be solved by substituting $y=vx$ and $\large\frac{dy}{dx}$$=v+x \large \frac{dv}{dx}$
$v+x \large \frac{dv}{dx}=\frac{x+2vx}{x}$
$v+x \large \frac{dv}{dx}=\frac{x(1+2v)}{x}$
$=>x \large \frac{dv}{dx}$$=1+2v-v$
$=>x \large \frac{dv}{dx}$$=1+v$
Now seperating the variables we get,
Now integrating on both sides we get,
$ \large \int \frac{dv}{1+v}=\int \frac{dx}{x}$
$\log |1+v|=\log x +\log k$
Substituting for $v=y/x$ we get,
$\log |1+\large\frac{y}{x}|$$=\log kx$
$=> \large \frac{x+y}{x}$$=kx$
Therefore $ x+y=kx^2$
Hence the solution of the differential equation $=\large\frac{dy}{dx}=\frac{x+2y}{x}$ is $x+y=kx^2$. is $True$
answered May 23, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App