Ask Questions, Get Answers

Want to ask us a question? Click here
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Thermodynamics
0 votes

A monatomic ideal gas at temperature $ T_1$ is enclosed in a cylinder with frictionless piston. The gas is allowed to expand adiabatically to a temperature $T_2$ by releasing piston suddenly. If $L_1$ and $L_2$ are lengths of gas columns before and after expansion, then

$\begin {array} {1 1} (A)\;\large\frac{T_1}{T_2} = \bigg( \large\frac{L_1}{L_2} \bigg)^{ \large\frac{2}{3}} & \quad (B)\;\large\frac{T_2}{T_1} = \bigg( \large\frac{L_1}{L_2} \bigg)^{ \large\frac{5}{3}} \\ (C)\;\large\frac{T_1}{T_2} = \bigg( \large\frac{L_2}{L_1} \bigg)^{ \large\frac{5}{3}} & \quad (D)\;\large\frac{T_1}{T_2} = \bigg( \large\frac{L_2}{L_1} \bigg)^{ \large\frac{2}{3}} \end {array}$

Can you answer this question?

1 Answer

0 votes
For adiabatic process, $T_1V_1^{\gamma -1} = T_2V_2^{\gamma-1}$ if $‘a’$ is cross-section of vessel then
$V_1 = a.L_1 \: and \: V_2 = a.L_2$
So, $ \large\frac{T_1}{T_2}$$ = \bigg( \large\frac{V_2}{V_1} \bigg)^{\gamma-1}$$ = \bigg( \large\frac{aL_2}{aL_1} \bigg)^{\gamma-1}$$ = \bigg( \large\frac{L_2}{L_1} \bigg)^{\gamma-1}$
Now for monatomic gases, $ \gamma \bigg(=\large\frac{C_p}{C_v} \bigg) $$= \large\frac{5}{3}$
So, $ \large\frac{T_1}{T_2}$$ = \bigg( \large\frac{L_2}{L_1} \bigg)^{\large\frac{5}{3}-1}$$ = \bigg (\large\frac{L_2}{L_1} \bigg)^{\large\frac{2}{3}}$
Ans : (D)
answered Mar 20, 2014 by thanvigandhi_1
edited Mar 23, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App