Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Statement-1: $(p \wedge \sim q) \wedge (\sim p \wedge q)$ is a fallacy, and Statement-2 : $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is a tautology. Given these two statements, which of the following is true?

(A) Statement-1 is true, Statement-2 is false. (B) Statement-1 is false, Statement-2 is true. (C) Both statements are true, but Statement-2 is not a correct explanation of Statement-1 (D) Statement-1 is true, and Statement-2 is a correct explanation of Statement-1
Can you answer this question?

1 Answer

0 votes

Statement-1: $(p \wedge \sim q) \wedge (\sim p \wedge q)$ is a fallacy.

Statement-2 : $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$

Truth table for Statement-1: $(p \wedge \sim q) \wedge (\sim p \wedge q)$:
$\begin{matrix} p &q & \sim p & \sim q & (p \wedge \sim q) & (\sim p \wedge q) & (p \wedge \sim q ) \wedge (\sim p \wedge q)\\ T&T &F &F & F &F &F \\ T& F & F & T & T&F & F\\ F& T& T& F& F &T & F\\ F& F& T& T& F&F & F \end{matrix}$
This is a fallacy.
Truth table for Statement-2 : $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$:
$\begin{matrix} p & q & \sim p &\sim q & (p \rightarrow q) & (\sim q \rightarrow \sim p) & (p \rightarrow q )\leftrightarrow ( \sim q \rightarrow \sim p)\\ T&T &F &F & T &T &T \\ T& F & F & T & F&F & T\\ F& T& T& F& T&T & T\\ F& F& T& T& T& T & T \end{matrix}$
This is a tautology.
Therefore, while both statements are true, we can see that Statement-2 is not an explanation of Statement-1.
answered Mar 20, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App