logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the angle between the pairs of lines: $ \overrightarrow r = 2\hat i -5 \hat j +\hat k + \lambda (3\hat i +2 \hat j +6\hat k)\: and \: \overrightarrow r = 7\hat i - 6\hat k + \mu (\hat i +2\hat j +2\hat k) $

Can you answer this question?
 
 

1 Answer

0 votes
Given equations of the lines are
$ \overrightarrow r = 2\hat i -5 \hat j +\hat k + \lambda (3\hat i +2 \hat j +6\hat k)$.........(i) and
$ \overrightarrow r = 7\hat i - 6\hat k + \mu (\hat i +2\hat j +2\hat k) $.............(ii)
Comparing the equations with standard vector form of equation of line
$\overrightarrow r=\overrightarrow a+\lambda\:\overrightarrow b$ we get
$\overrightarrow b_1=3\hat i+2\hat j+6\hat k$ and $\overrightarrow b_2=\hat i+2\hat j+2\hat k$
$\overrightarrow b_1.\overrightarrow b_2=3+4+12=19$
$|\overrightarrow b_1|=\sqrt {9+4+36}=7$ and $ |\overrightarrow b_2|=\sqrt {1+4+4}=3$
Angle between the lines (i) and (ii) is given by
$cos^{-1}\bigg(\large\frac{\overrightarrow b_1.\overrightarrow b_2}{|\overrightarrow b_1|.|\overrightarrow b_2|}\bigg)$
$=cos^{-1}\bigg(\large\frac{19}{21}\bigg)$
answered Mar 20, 2014 by rvidyagovindarajan_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...