logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Given a non-empty set \( X,\) let \(\ast :\; P(X)\; \times\; P(X) \to P(X) \) be defined as \(A \ast B = \; ( A-B)\; \cup \; (B-A),\; \forall A, B \in \; P(X).\). Show that the empty set \(\emptyset \) is the identity for the operation $\ast$ and all the elemnets \(A\) of \( P(X) \) are invertible with \( A^{-1} \;= A\).

    \((Hint:\; (A- \emptyset )\; \cup \; (\emptyset - A)=A\; and ( A-A) \cup \; (A-A)= A \ast A = \emptyset) \)    
Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • An element $ e \in X $ is an identify element if $ e * A=A=A*e$ for $A \in X$
  • An element A will be invertible if there exists B such that $ A*B=e=B*A$
Given in a non-empty set $X$, $*:P(X) \times P(X) \to P(X)$ defined by $A*B=(A-B) \cup (B-A) \qquad A,B \in P(X)$
$\textbf {Step 1: Checking if the empty set}\; \phi \; \textbf{is the identity}$:
An element $ e \in X $ is an identify element if $ e * A=A=A*e$ for $A \in X$
Let $A \in P(X) \rightarrow$ $A * \phi=(A - \phi) \cup (\phi-A)=A \cup \phi = A$
Similarly, $\phi *A=(\phi -A) \cup (A - \phi)= \phi \cup A=A$
$\Rightarrow A * \phi=\phi *A=A \rightarrow $ $\phi$ the empty set is the identify element for given operation *
$\textbf {Step 2: Checking if the elements are invertible with}\; A^{-1} = A$:
An element A will be invertible if there exists B such that $ A*B=e=B*A$
$\Rightarrow A *A=(A -A) \cup (A-A) =\phi \cup \phi = \phi$
Hence all the elements of are invertible and $A^{-1}=A$
answered Feb 28, 2013 by meena.p
edited Mar 20, 2013 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...