Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Evaluate: $\large \int \limits_0^1$$ x\;e^{x^2}\; dx$

Can you answer this question?

1 Answer

0 votes
Substitute $ x^2=u $
Differentiating both the sides we get
$\Rightarrow  2x\;dx=du$
when $x=0,\:u=o$ and when $x=1,\:u=1$
$\Rightarrow\:\int^1_0 x\;e^{x^2}\; dx =$$\large\frac{1}{2} \large \int^1_0 $$ e^u du$
$\qquad = \large \frac{1}{2} $$[e^u]^1_0$
$\Rightarrow\:I = \large\frac{1}{2} $$(e^1-e^0) $
$\qquad = \large\frac{1}{2}$$(e-1) \approx 0.859$
answered Mar 21, 2014 by balaji.thirumalai
edited Mar 23, 2014 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App