Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

An edge of a variable cube is increasing at the rate of $3\; cm/s$. How fast is the volume of the cube increasing when the edge is $10\; cm$ long?

$\begin{array}{1 1} (A)\;900cm^3/s \\ (B)\;500cm^3/s \\ (C)\;600cm^3/s \\(D)\;100cm^3/s \end{array} $

Can you answer this question?

1 Answer

0 votes
  • If $y=f(x)$,then $\large\frac{dy}{dx}$ measures the rate of change of $y$ w.r.t $x$.
  • $\big(\large\frac{dy}{dx}\big)_{x=x_0}$ represents the rate of change of $y$ w.r.t $x$ at $x=x_0$
Step 1:
Given : $\large\frac{da}{dt}$$=3cm/s$ and $a=10cm$
Volume of the cube =$a^3$
Differentiating w.r.t $t$ on both sides we get,
Step 2:
Substituting for $a$ and $\large\frac{da}{dt}$
$\large\frac{dv}{dt}$$=3\times 10\times 10\times 3$
The rate at which the volume of the cube when the edge is $900cm^3/s$
answered Jul 5, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App