Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Electromagnetic Induction
0 votes

A fully charge capacitor C either initial charge q is connected to a coil of self inductance. L at $t=0$ the time at which the energy is stored equally between electric and magnetic field is

$(a)\;\pi \sqrt {LL} \\ (b)\;\frac{\pi}{4} \sqrt {Ll} \\(c)\;2 \pi \sqrt {Ll} \\(d)\;\sqrt {LL} $

Can you answer this question?

1 Answer

0 votes
In Lc oscillator
maximum energy in $C=\large\frac{V^2_{max}}{2C}$
Maximum energy in $L= \large\frac{4}{2} $$L I_{max ^2}$
We have $I= I_{max} \sin wt$ ----(i)
Also equal energy will be when $\large\frac{1}{2}$$LI^2$ is half of maximum value.
$\large\frac{1}{2} $$LI^2=\large\frac{1}{2} \bigg[\frac{1}{2}$$L I^2_{max}\bigg]$
$I^2=\large\frac{1}{2} $$I_{max}^2$
$I= \large\frac{1}{\sqrt 2} $$I_{max}$-------(ii)
From (i) and (ii)
$I_{max} \sin wt =\large\frac{1}{\sqrt 2} $$I_{max}$
$\sin wt =\large\frac{1}{\sqrt 2}$
$wt =\large\frac{\pi}{4}$
$\large\frac{2 \pi}{T}$$t=\large\frac{\pi}{4}$
$t= \large\frac{T}{8}$
or $t= \large\frac{2 \pi \sqrt {Ll}}{8}$
$\qquad= \large\frac{\pi}{4} $$ \sqrt {Ll}$
Hence b is the correct answer.


answered Mar 25, 2014 by meena.p
edited Sep 24, 2014 by thagee.vedartham

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App