logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Sequences and Series
0 votes

Find the sum of $n$ terms of the series whose $n^{th}$ term is given by $n(n+1)(n+4)$

$\begin{array}{1 1}\large\frac{n(n+1)(3n^2+23n+34)}{24} \\ \large\frac{n(n+1)(3n^2+23n+24)}{12} \\ \large\frac{n(n+1)(3n^2+20n+34)}{12}\\\large\frac{n(n+1)(3n^2+23n+34)}{12}\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Sum of $n$ terms of any series =$S_n=\sum t_n$
  • $\sum (A+B+C)=\sum A+\sum B+\sum C$
  • $\sum kA=k.\sum A$ where $k$ is a constant.
  • $\sum n=\large\frac{n(n+1)}{2}$
  • $\sum n^2=\large\frac{n(n+1)(2n+1)}{6}$
  • $\sum n^3=\large\frac{n^2(n+1)^2}{4}$
Given: $n^{th}$ term of the series is $t_n=n(n+1)(n+4)$
We know that sum of $n$ terms of any series =$S_n=\sum t_n$
$\Rightarrow\:S_n=\sum t_n=\sum n(n+1)(n+4)$
$\qquad\:=\sum( n^3+5n^2+4n)$
We know that $\sum (A+B+C)=\sum A+\sum B+\sum C$
$\Rightarrow\:S_n=\sum n^3+\sum 5n^2+\sum 4n$
We know that $\sum kA=k.\sum A$ where $k$ is a constant.
$\qquad=\sum n^3+5\sum n^2+4\sum n$
$\qquad =\large\frac{n^2(n+1)^2}{4}$$+5\times \large\frac{n(n+1)(2n+1)}{6}$$+4\times \large\frac{n(n+1)}{2}$
$\qquad=\large\frac{n(n+1)}{2}$$\bigg[\large\frac{n(n+1)}{2}$$+\large\frac{5(2n+1)}{3}$$+4\bigg]$
$\qquad=\large\frac{n(n+1)}{2}$$\bigg[\large\frac{3n^2+3n+20n+10+24}{6}\bigg]$
$\qquad=\large\frac{n(n+1)(3n^2+23n+34)}{12}$
answered Mar 24, 2014 by rvidyagovindarajan_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...