$(a)\;\large\frac{17}{3} \qquad(b)\;\large\frac{14}{3}\qquad(c)\;\large\frac{15}{2}\qquad(d)\;\large\frac{17}{5}$

Want to ask us a question? Click here

Browse Questions

Ad |

+1 vote

0 votes

The numbers are 1,2,3,4,5,6

Let X be the bigger number among the two number.

i.e., X = 2,3,4,5,6

$P(x = 2) = P(1 , 2)$

$ = \large\frac{1}{6C_2}$$= \large\frac{1}{15}$

$P(x = 3) = P(1 , 3) (2,3)$

$ = \large\frac{2}{6C_2}$$= \large\frac{2}{15}$

$P(x = 4) = P(1 , 4) (2,4) (3,4)$

$ = \large\frac{3}{6C_2}$$= \large\frac{3}{15}$$= \large\frac{1}{5}$

$P(x = 5) = P(1 , 5) (2,5) (3,5) (4,5)$

$ = \large\frac{4}{6C_2}$$ =\large\frac{4}{15}$

$P(x = 6) = P(1 , 6) (2,6) (3,6) (4,6) (5,6)$

$ = \large\frac{5}{6C_2}$$= \large\frac{5}{15}$$= \large\frac{1}{3}$

Hence the probability distribution is :

$X \quad\quad \quad \quad2\quad\quad 3 \quad \: \: 4\quad \: \: 5 \: \: \quad 6$

$p(x=x) \: \: \large\frac{1}{15} \quad \large\frac{2}{15} \quad \large\frac{1}{5} \quad \large\frac{4}{15} \quad \large\frac{1}{3}$

Mean = $ 2 \bigg(\large\frac{1}{15} \bigg)+3 \bigg(\large\frac{2}{15} \bigg) + 4 \bigg(\large\frac{1}{5} \bigg) + 5 \bigg (\large\frac{4}{15} \bigg)+ 6 \bigg (\large\frac{1}{3} \bigg)$

$ \large\frac{2}{15}$$+ \large\frac{6}{15}$$+ \large\frac{4}{5}$$ + \large\frac{20}{15}$$+ \large\frac{6}{3}$

$ \large\frac{46}{15}$$+ \large\frac{4}{5}$$+ 2$

$ \large\frac{70}{15}$$ \large\frac{14}{3}$

Hence the mean is $ \large\frac{14}{3}$

Ask Question

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...