$\begin{array}{1 1} (A)\;400\pi\;cm^3/cm \\ (B)\;200\pi\;cm^3/cm \\(C)\;100\pi\;cm^3/cm \\ (D)\;450\pi\;cm^3/cm \end{array} $

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

- If $y=f(x)$,then $\large\frac{dy}{dx}$ measures the rate of change of $y$ w.r.t $x$.
- $\big(\large\frac{dy}{dx}\big)_{x=x_0}$ represents the rate of change of $y$ w.r.t $x$ at $x=x_0$

Step 1:

Volume of the sphere is $v=\large\frac{4}{3}$$\pi r^3$

Radius $r=10cm$

Hence differentiating w.r.t $r$ on both sides,

$\large\frac{dv}{dr}=\large\frac{4}{3}$$\pi 3r^2$

Step 2:

Substituting the values for $r$ we get,

$\large\frac{dv}{dr}$$=\large\frac{4}{3}$$\pi\times 3(10)^2$

$\qquad=400\pi cm^3/cm$

Hence the rate at which the volume is increasing is $400\pi cm^3/cm$

Ask Question

Take Test

x

JEE MAIN, CBSE, AIPMT Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...