logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

If $x,y,z \in [-1,1]\;$ such that $\;\sin^{-1}x+\sin^{-1}y+\sin^{-1}z=\frac{3\pi}{2},$ find the value of $x^{2006}+y^{2007}+z^{2008}-\Large \frac{9}{x^{2006}+y^{2007}+z^{2008}}$

$\begin{array}{1 1} 0 \\ 3 \\ 6 \\ 9 \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Principal interval of \(sin^{-1}x \:is\:[-\large\frac{\pi}{2},\frac{\pi}{2}]\)
  • \(sin\large\frac{\pi}{2}=1\)
Ans = 0
 
Max value of \( sin^{-1}x \: is \:\large \frac{\pi}{2} \) and min value is \( \large\frac{-\pi}{2}\)
If \( sin^{-1}x+sin^{-1}y+sin^{-1}z=\large\frac{3\pi}{2}\) then \( sin^{-1}x=\large\frac{\pi}{2}, \: sin^{-1}y=\large\frac{\pi}{2},\: sin^{-1}z=\large\frac{\pi}{2}\)
 
therefore \( x=y=z=sin\large\frac{\pi}{2}=1\)
Substituting the values of x,y,z in the given expression we get
 
Ans \( 1+1+1-\frac{9}{3}=0\)

 

answered Feb 20, 2013 by thanvigandhi_1
edited Mar 19, 2013 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...