logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Statistics
0 votes

For two variables $x$ and $y$ with the same mean the two regression lines are $x+2y-5=0$ $ 2x+3y-8=0$ and variance $(x)=12$ Then $ \sigma_y$ is

$\begin {array} {1 1} (A)\;4 & \quad (B)\;5 \\ (C)\;2 & \quad (D)\;None\: of \: these \end {array}$

Can you answer this question?
 
 

1 Answer

0 votes
Slopes of regression lines are $ -\large\frac{1}{2}$ and $ \large\frac{-2}{3}$
$ \therefore b_{yx} = -\large\frac{ 1}{2}$ and $ b_{xy}= -\large\frac{3}{2}$
$ \therefore r^2 = \bigg( -\large\frac{1}{2} \bigg) \bigg( -\large\frac{3}{2} \bigg) = \large\frac{3}{4} $ $( < 1)$
$ \Rightarrow r = -\large\frac{\sqrt 3}{2}$
Also $b_{yx}=r\large\frac{\sigma_y}{\sigma_x}$
$ \sigma_x=2\sqrt 3$
$ \therefore \sigma_x^2 = 12$
$ -\large\frac{1}{2} $ $= -\large\frac{\sqrt 3}{2}.\large\frac{\sigma_y}{2\sqrt 3}$
$ \sigma_y = 2$
Hence Ans (C)
answered Mar 26, 2014 by balaji
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...