Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

A particle moves along the curve \( 6y = x^3 +2\). Find the points on the curve at which the \(y\)-coordinate is changing $8$ times as fast as the \(x\)-coordinate.

$\begin{array}{1 1} \big(-4,\frac{-31}{3}\big)\; and (4,11) \\ \big(-4,\frac{31}{3}\big)\; and\;(4,11) \\\big(-4,\frac{-31}{3}\big)\; and \;(-4,11) \\ \big(-4,\frac{-31}{3}\big)\; and \;(4,-11) \end{array} $

Can you answer this question?

1 Answer

0 votes
  • If $y=f(x)$,then $\large\frac{dy}{dx}$ measures the rate of change of $y$ w.r.t $x$.
  • $\big(\large\frac{dy}{dx}\big)_{x=x_0}$ represents the rate of change of $y$ w.r.t $x$ at $x=x_0$
Step 1:
Let the required point be $P(x,y)$.It is given that rate of change of $y$-coordinate =8(Rate of change of $x$-coordinate)
It is given $6y=x^3+2$
On differentiating w.r.t $t$ on both sides,
$\Rightarrow 6.\big(8\large\frac{dx}{dt}\big)=$$3x^2\large\frac{dx}{dt}$
$\Rightarrow 3x^2=48$
$\Rightarrow x^2=16$
$\Rightarrow x=\pm 4$
Step 2:
When $x=4$,then $6y=4^3+2$
$\Rightarrow 66$
Therefore $y=11$
When $x=-4$,then $6y=(-4)^3+2$
$\Rightarrow -62$
Hence the required points are $\big(-4,\large\frac{-31}{3}\big)$ and $(4,11)$.
answered Jul 8, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App