Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the angle of intersection of two circles?

$\begin{array}{1 1}(a)\;\cos(180^{\large\circ}-\theta)=\large\frac{r_1^2+r_2^2-d^2}{2r_1r_2}\\(b)\;\cos(180^{\large\circ}+\theta)=\large\frac{r_1^2-r_2^2-d^2}{2r_1r_2}\\(c)\;\cos(180^{\large\circ}-\theta)=\large\frac{r_1^2-r_2^2+d^2}{r_1r_2}\\(d)\;\cos(180^{\large\circ}-\theta)=\large\frac{r_1^2+r_2^2+d^2}{4r_1r_2}\end{array}$

Can you answer this question?

1 Answer

0 votes
  • In a $\Delta\:ABC$ $ cosA=\large\frac{b^2+c^2-a^2}{2bc}$
Let the two circles be $x^2+y^2+2gx+2fy+c=0$ and $x^2+y^2+2g_1x+2f_1y+c_1=0$
If the circles intersect at P then angle $\theta$ is
the angle between the tangents to both the circles at the point P.
$C_1$ and $C_2$ are centres of the circles.
$\Rightarrow\:C_1(-g,-f),C_2(-g_1,-f_1)$ and
Radius are given by $ r_1=\sqrt{g^2+f^2-c},r_2=\sqrt{g_1^2+f_1^2-c_1}$
$d=|C_1C_2|$=distance between the centres
$\Rightarrow \sqrt{g^2+f^2+g_1^2+f_1^2-2gg_1-2ff_1}$
In $\Delta C_1PC_2$
$\cos \alpha=\big(\large\frac{r_1^2+r_2^2-d^2}{2r_1r_2}\big)$
where $\alpha$ is the angle $C_1PC_2$
$\theta$ is the angle $A'PB'$
So $\cos(180^{\large\circ}-\theta)=\large\frac{r_1^2+r_2^2-d^2}{2r_1r_2}$
Hence (a) is the correct answer.
answered Mar 27, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App