Ask Questions, Get Answers

Home  >>  CBSE XI  >>  Math  >>  Sequences and Series

Find the sum of $n$ terms of the series whose $n^{th}$ term is $(2n-1)^2$

$\begin{array}{1 1}\large\frac{n(4n^2-5)}{3} \\\large\frac{n(4n^2+1)}{3} \\\large\frac{n(4n^2-1)}{3} \\\large\frac{n(4n^2-n-1)}{3} \end{array} $

1 Answer

  • Sum of $n$ terms of any series $=S_n=\sum t_n$
  • $\sum (A+B)=\sum A+\sum B$
  • $\sum k.A=k.\sum A$ where $k$ is a constant.
  • $\sum n^2=\large\frac{n(n+1)(2n+1)}{6}$
  • $\sum n=\large\frac{n(n+1)}{2}$
  • $\sum 1=n$
Given $t_n=(2n-1)^2=4n^2-4n+1$
We know that sum of $n$ terms of the series $=S_n=\sum t_n=\sum(4n^2-4n+1)$
$\Rightarrow\:S_n=4\sum n^2-4.\sum n+\sum 1$
answered Mar 27, 2014 by rvidyagovindarajan_1

Related questions