logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Sequences and Series
0 votes

Find the sum of $n$ terms of the series whose $n^{th}$ term is $(2n-1)^2$

$\begin{array}{1 1}\large\frac{n(4n^2-5)}{3} \\\large\frac{n(4n^2+1)}{3} \\\large\frac{n(4n^2-1)}{3} \\\large\frac{n(4n^2-n-1)}{3} \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Sum of $n$ terms of any series $=S_n=\sum t_n$
  • $\sum (A+B)=\sum A+\sum B$
  • $\sum k.A=k.\sum A$ where $k$ is a constant.
  • $\sum n^2=\large\frac{n(n+1)(2n+1)}{6}$
  • $\sum n=\large\frac{n(n+1)}{2}$
  • $\sum 1=n$
Given $t_n=(2n-1)^2=4n^2-4n+1$
We know that sum of $n$ terms of the series $=S_n=\sum t_n=\sum(4n^2-4n+1)$
$\Rightarrow\:S_n=4\sum n^2-4.\sum n+\sum 1$
$\qquad\:=4.\large\frac{n(n+1)(2n+1)}{6}$$-4.\large\frac{n(n+1)}{2}$$+n$
$\qquad\:=n\bigg[\large\frac{2(n+1)(2n+1)}{3}$$-2(n+1)+1\bigg]$
$\qquad\:=n\bigg[\large\frac{4n^2+6n+2-6n-6+3}{3}\bigg]$
$\qquad\:=\large\frac{n(4n^2-1)}{3}$
answered Mar 27, 2014 by rvidyagovindarajan_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...