Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

The radius of an air bubble is increasing at the rate of \( \large\frac{1}{2}\)cm/s. At what rate is the volume of the bubble increasing when the radius is $1\; cm$?

$\begin{array}{1 1} (A)\;\large\frac{1}{2\pi}cm^3/s \\ (B)\;\large\frac{-1}{2\pi}cm^3/s \\ (C)\;-2 \; cm^3/s \\ (D)\;2\pi \; cm^3/s \end{array} $

Can you answer this question?

1 Answer

0 votes
  • If $y=f(x)$,then $\large\frac{dy}{dx}$ measures the rate of change of $y$ w.r.t $x$.
  • $\big(\large\frac{dy}{dx}\big)_{x=x_0}$ represents the rate of change of $y$ w.r.t $x$ at $x=x_0$
Step 1:
Given : The radius of the air bubble is increasing at the rate of $\large\frac{1}{2}$$cm/s$
Radius $r=1cm$
Volume of the sphere $v=\large\frac{4}{3}$$\pi r^3$
Differentiating w.r.t $t$ on both sides we get,
$\large\frac{dv}{dt}=\frac{4}{3}$$\times \pi\times 3r^2.\large\frac{dr}{dt}$
Step 2:
Substituting for $r$ and $\large\frac{dr}{dt}$ we get,
$\large\frac{dv}{dt}=\frac{4}{3}$$\times \pi\times 3\times (1)^2\times \large\frac{1}{2}$
$\Rightarrow \large\frac{dv}{dt}$$=2\pi cm^3/s$
The rate at which the volume of the air bubble increases is $2\pi cm^3/s$
answered Jul 8, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App