Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

A balloon, which always remains spherical, has a variable diameter $\large\frac{3}{2}$$(2x+1)$. Find the rate of change of its volume with respect to $x.$

$\begin{array}{1 1} (A)\;\frac{27}{8}\pi(2x+1)^2 \\ (B)\;\frac{-27}{8}\pi(2x+1)^2 \\ (C)\;\frac{-27}{4}\pi(2x+1)^2 \\ (D)\;\frac{27}{4}\pi(2x+1)^2 \end{array} $

Can you answer this question?

1 Answer

0 votes
  • If $y=f(x)$,then $\large\frac{dy}{dx}$ measures the rate of change of $y$ w.r.t $x$.
  • $\big(\large\frac{dy}{dx}\big)_{x=x_0}$ represents the rate of change of $y$ w.r.t $x$ at $x=x_0$
Step 1:
Diameter of the sphere =$\large\frac{3}{2}$$(2x+1)$
Therefore radius $r=\large\frac{3}{4}$$(2x+1)$
Volume of the sphere $v=\large\frac{4}{3}$$\pi r^3$
Substituting for $r$ we get,
Step 2:
Differentiating w.r.t $x$ on both sides,
$\large\frac{dv}{dx}=\frac{4}{3}$$x\times \big(\large\frac{3}{4}\big)^3$$\times 3(2x+1)^2(2)$
answered Jul 8, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App