$\begin{array}{1 1}3,5,7 \\ 5,8,11 \\ 5,7,9 \\ 3,7,11 \end{array} $

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

- Three numbers in A.P. are to be assumed as $a-d,\:a,\:a+d$

Let the three numbers in A.P. be $a-d,\:a,\:a+d$

Given that the sum of the numbers $=24$

$\Rightarrow\:a-d+a+a+d=24$

$\Rightarrow\:3a=24$ or $a=8$

Also given that the product of the numbers $=440$

$\Rightarrow\:(a-d).a(a+d)=440$

$\Rightarrow\:a(a^2-d^2)=440$

Substituting the value of $a$ we get

$8(64-d^2)=440$

$\Rightarrow\:64-d^2=\large\frac{440}{8}$$=55$

$\Rightarrow\:d^2=64-55=9$ or $d=\pm3$

Substituting the value of $a$ and $d$ we get the three numbers are

$5,8\:11$

Ask Question

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...