Ask Questions, Get Answers

Home  >>  CBSE XI  >>  Math  >>  Sequences and Series

The sum of three numbers in G.P. is $56$. If we subtract $1,7,21$ from the numbers in that order, we obtain an A.P. Find the numbers.

$\begin{array}{1 1} -8,16,-32 \\ 4,8,16 \\ 8,16,32 \\ 16,32,64 \end{array} $

1 Answer

  • If $a,b,c$ are in A.P. then $2b=a+c$
Let the three numbers in G.P. be $a,ar,ar^2$
It given that $a+ar+ar^2=56$......(i)
It is also given that $(a-1),\:\:(ar-7)\:\:and\:\:(ar^2-21)$ are in A.P.
We know that if any three numbers $x,y,z$ are in A.P., then $2y=x+z$
From (i) we get $ a+ar^2=56-ar$
$\Rightarrow\:ar=16$ $\Rightarrow\:a=\large\frac{16}{r}$
Substituting the value of $ar$ and $a$ in (i) we get
Substituting the value of $r=2$, we get $a=\large\frac{16}{2}=8$
and if $r=\large\frac{1}{2}$ we get $a=\large\frac{16}{1/2}$$=32$
$\therefore$ The numbers are $8,16\:\;and\:\:32$
answered Mar 30, 2014 by rvidyagovindarajan_1

Related questions

Download clay6 mobile appDownload clay6 mobile app