Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Sequences and Series
0 votes

The sum of first four terms of an A.P. is $56$. The sum of last four terms is $112$. If its first term is $11$ then find the number of terms.

$\begin{array}{1 1}21 \\ 20 \\ 11 \\ 19 \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Sum of $n$ terms of an A.P. $=S_n=\large\frac{n}{2}$$(2a+(n-1)d)$
Let the A.P. be $a,\:a+d,\:a+2d,..........t_n$
Given that sum of first $4$ terms of the A.P.$=56$ and $a=11$
We know that sum of $n$ terms of an A.P. $=S_n=\large\frac{n}{2}$$(2a+(n-1)d)$
$\Rightarrow\:\large\frac{4}{2}$$(2\times 11+(4-1)d)=56$
$\Rightarrow\:3d=6$ or $d=2$
Step 2
Also given that sum of last $4$ terms $=112$
If $ t_1,t_2,.........t_n$ is an A.P. with first term $a$, common difference $d$ and
last term $t_n$, then $t_n,t_{n-1}...........t_2,t_1$ is an A.P. with first term $t_n$ and common difference $-d$
But we know that $t_n=a+(n-1)d$
$\Rightarrow\:n-1=20/2=10$ $\Rightarrow\:n=11$
$i.e., $ No. of terms $=11$.
answered Mar 30, 2014 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App