Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Sequences and Series
0 votes

If $\large\frac{a+bx}{a-bx}=\frac{b+cx}{b-cx}=\frac{c+dx}{c-dx}$$\:(x\neq0)$, then show that $a,b,c\:and\:d$ are in G.P.

Can you answer this question?

1 Answer

0 votes
  • comoponendo and dividendo: if $\large\frac{a}{b}=\frac{c}{d}$ then $\large\frac{a+b}{a-b}=\frac{c+d}{c-d}$
Given : $\large\frac{a+bx}{a-bx}=\frac{b+cx}{b-cx}=\frac{c+dx}{c-dx}$
To prove $a,b,c\:and\:d$ are in G.P., we have to prove $\large\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$.
Using componendo and dividendo we get
Step 2
Similarly by using componendo and dividento for
$\frac{b+cx}{b-cx}=\frac{c+dx}{c-dx}$ we get
From (i) and (ii) we get
$\Rightarrow\: a,b,c\:and\:d$ are in G.P.
answered Mar 30, 2014 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App