Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Conic Sections
0 votes

Find the equation of the circle with centre ($\large\frac{1}{2}$, $\large\frac{1}{4}$) and radius $\large\frac{1}{12}$

$\begin{array}{1 1} x^2+y^2+4x-6y-3=0 \\ x^2+y^2+4x+6y-3=0 \\ x^2+y^2+4x-6y+3=0 \\ x^2+y^2-4x-6y-3=0\end{array} $

Can you answer this question?

1 Answer

0 votes
  • Given C (h, k) be the centre and r the radius of circle. Let P(x, y) be any point on the circle. Then, by the definition, | CP | = r . By the distance formula, we have, $(x-h)^2+(y-k)^2=r^2$
  • http://clay6.com/mpaimg/Toolbar_1.png
Given: circle with centre (0,2) and radius 2, $\rightarrow r = 4, h = -2, k = 3$
Therefore equation of circle using the distance formula is: $ (x-(-2))^2 + (y-3)^2 = 4^2$
$\quad \quad x^2+4x+4+y^2-6y+9=16$
$\quad \quad x^2+y^2+4x-6y-3=0$
answered Apr 1, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App