Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Conic Sections
0 votes

Find the co-ordinates of the focus, axis of the parabola, equations of the directrix and length of latus rectum of the parabola $x^2=6y$

\begin{array}{1 1}(0,\large\frac{3}{2}) \quad \text{y-axis} \quad y = \large\frac{-3}{2} \quad 6 \\ (0,\large\frac{3}{2}) \quad \text{y-axis} \quad y = \large\frac{-1}{2} \quad 6 \\ (0,\large\frac{-3}{2}) \quad \text{x-axis} \quad y = \large\frac{-3}{2} \quad 6 \\ (0,\large\frac{-3}{2}) \quad \text{x-axis} \quad y = \large\frac{-3}{2} \quad 6\end{array}

Can you answer this question?

1 Answer

0 votes
Given $x^2=6y$
The co-efficient of $y$ is positive, comparing with $x^2 = 4ay \rightarrow 4a = 6 \rightarrow a = \large\frac{3}{2}$
1) Therefore co-ordinates of the focus = $(0,a) = (0,\large\frac{3}{2})$
2) Since $x^2 = 6x$, the axis of the parabola is the y-axis
3) The Equation of the directrix $ y = -a \rightarrow y = \large\frac{-3}{2}$
4) The Length of the Latus Rectum $ = 4a = 4 \times \large\frac{3}{2}$ = 6


answered Apr 1, 2014 by balaji.thirumalai
edited Apr 1, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App