Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The mean kinetic energy of a molecule at $0^{\large\circ}C$ is $5.62\times10^{-14} erg$ . Calculate Boltzmann's Constant . If the value of $R = 8.314\times10^7 erg$ . then also calculate the no. of molecules present in one mole of gas.

$\begin {array} {1 1}(a)\;1.372\times10^{-16}erg\;molecule^{-1}K , 6.059\times10^{23}\\(b)\;1.372\times10^{-19}erg\;molecule^{-1}K , 6.059\times10^{20}\\(c)\;1.372\times10^{-14}erg\;molecule^{-1}K , 6.059\times10^{14}\\(d)\;1.372\times10^{-15}erg\;molecule^{-1}K , 6.059\times10^{19}\end {array}$

Can you answer this question?

1 Answer

0 votes
Average Kinetic energy = $\large\frac{K.E / mol}{Av. No.}$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \large\frac{3RT}{2\times N}$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \large\frac{3}{2}KT$
$ K = \large\frac{5.621\times10^{-14}\times2}{3\times273}$
(Since T = 273 K)
$ = 1.372\times10^{-16}erg\;molecule^{-1}K$
Now Avogadro No. = $\large\frac{R}{K} = \large\frac{8.314\times10^7}{1.372\times10^{-16}}$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = 6.059\times10^{23}$
Hence answer is (a)
answered Apr 2, 2014 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App