Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Sequences and Series
0 votes

If $a,b,c$ are in A.P., $b,c,d$ are in G.P. and $\large\frac{1}{c},\frac{1}{d},\frac{1}{e}$ are in A.P., then prove that $a,c,e$ are in G.P.$

Can you answer this question?

1 Answer

0 votes
  • If $x,y,z$ are in A.P. then $2y=x+z$
  • If $x,y,z$ are in G.P., then $y^2=xz$
Given $a,b,c$ are in A.P. $b,c,d$ are in G.P. and $\large\frac{1}{c},\frac{1}{d},\frac{1}{e}$ are in A.P.
$\Rightarrow\: 2b=a+c$.......(i)
$c^2=bd.$.......(ii) and $\large\frac{2}{d}=\frac{1}{c}+\frac{1}{e}$..........(iii)
(iii) $\Rightarrow\:2ce=d(c+e)$
We have to prove that $a,c,e$ are in G.P.
$\Rightarrow\:$ We have to prove that $c^2=ae$
Step 2
From (i) and (ii) we get $c^2=\large\frac{a+c}{2}$$d$.....(iv)
From (iii) $d=\frac{2ce}{c+e}$
Substituting this value of $d$ in (iv) we get
$c^2=\large\frac{a+c}{2}$$\times \large\frac{2ce}{c+e}$
$\Rightarrow\:a,c,e$ are in G.P.
hence proved
answered Apr 2, 2014 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App