For I order $K_1=\large\frac{0.693}{t 1/2}$

For II order $K_2=\large \frac{1}{t 1/2 \alpha}$

$K_1= \large\frac{0.693}{T_1}$

$K_2 = \large\frac{1}{T_2 \alpha}$

If $T_1=T_2$ then $\large\frac{K_1}{K_2}$$=0.693\;\alpha$

Initially $r_1=K_1[a]^1, r_2= K_2[ \alpha]^2$

$\therefore \large\frac{r_1}{r_2}=\frac{K_1}{K_2 \alpha}=\frac{K_2 \times 0.693 \times \alpha}{K_2 \times \alpha}$

$\qquad=0.693$

Hence c is the correct answer.