logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Limits and Derivatives
0 votes

Evaluate the following limits \[\] $ \lim\limits_{ x \to \pi} \large\frac{ \sin ( \pi - x)}{ \pi ( \pi - x)}$

$\begin{array}{1 1} \large\frac{1}{\pi} \\ \pi \\ -\large\frac{1}{\pi} \\-\pi \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
$ \lim\limits_{ x \to \pi} \large\frac{ \sin ( \pi - x)}{ \pi ( \pi - x)}$
We can see that when $ x \to n \Rightarrow ( n - x) \to 0$.
$ \Rightarrow \lim\limits_{ x \to \pi} \large\frac{ \sin ( \pi - x)}{ \pi ( \pi - x)}$$ = \large\frac{1}{\pi}$$ \; \lim\limits_{(\pi - x) \to 0} \large\frac{\sin ( \pi-x)}{ (\pi - x)}$
$ = \large\frac{1}{\pi} \quad$ Using $\bigg[ \lim\limits_{y \to 0} \large\frac{ \sin \: y}{y} $$ = 1 \bigg]$
answered Apr 4, 2014 by thanvigandhi_1
edited May 16, 2014 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...