logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XI  >>  Math  >>  Limits and Derivatives

Let $a_1, a_2, ....,a_n$ be fixed real numbers and define a function $f(x) = (x-a_1)(x-a_2)...(x-a_n)$ \[\] What is $ \lim\limits_{x \to a_1}f(x)$? For some $ a \neq a_1, a_2,...,a_n$. Compute $ \lim\limits_{x \to a}f(x)$.

1 Answer

The given function is $f(x) = (x-a_1)(x-a_2)...(x-a_n)$
$ \lim\limits_{x \to a_1} f(x) = \lim\limits_{x \to a_1} [(x-a_1)(x-a_2)...(x-a_n)]$
$ = [ \lim\limits_{x \to a_1} (x-a_1)] [ \lim\limits_{x \to a_1} (x-a_2)]...[\lim\limits_{x \to a_1} (x-a_n)]$
$ = (a_1-a_1)(a_1-a_2)...(a_1-a_n)=0$
$ \therefore \lim\limits_{x \to a_1} f(x)=0$
Now $ \lim\limits_{x \to a} f(x) = \lim\limits_{x \to a} [(x-a_1)(x-a_2)...(x-a_n)]$
$ = [ \lim\limits_{x \to a} (x-a_1)] [ \lim\limits_{x \to a} (x-a_2)]...[\lim\limits_{x \to a} (x-a_n)]$
$ = (a-a_1)(a-a_2)...(a-a_n)$
$ \therefore \lim\limits_{x \to a} f(x) = (a-a_1)(a-a_2)...(a-a_n)$
answered Apr 7, 2014 by thanvigandhi_1
 

Related questions

...