Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Limits and Derivatives
0 votes

Find the derivative of the given function from first principle \[\] $x^3-27$

Can you answer this question?

1 Answer

0 votes
Let $f(x) = x^3-27$. Accordingly, from the first principle.
$f'(x) = \lim\limits_{h \to 0} \large\frac{f(x+h)-f(x)}{h}$
$= \lim\limits_{h \to 0} \large\frac{[ (x+h)^3-27]-(x^3-27)}{h}$
$= \lim\limits_{h \to 0} \large\frac{x^3+h^3+3x^2h+3xh^2-x^3}{h}$
$= \lim\limits_{h \to 0} \large\frac{h^3+3x^2h+3xh^2}{h}$
$= \lim\limits_{h \to 0} (h^2+3x^2+3xh)$
$ = 0+3x^2+0 = 3x^2$
answered Apr 7, 2014 by thanvigandhi_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App