logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

The set of lines $ax+by+c=0$ where $3a+2b+4c=0$ is concurrent at the point.

$\begin{array}{1 1}(A)\;(\frac{1}{2},\frac{2}{3}) \\(B)\;(\frac{3}{4},\frac{1}{2})\\(C)\;(\frac{2}{3},2)\\(D)\;(\frac{2}{5},\frac{1}{5}) \end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Given that,
$3a+2b+4c=0$
$\large\frac{3}{4}$$a+\large\frac{2b}{4}+\large\frac{4c}{c}$$=0$
=> $\large\frac{3}{4}$$a+\large\frac{1}{2}$$b+c=0$
=> The set of lines $ax+by+c=0$ passes through $(\large\frac{3}{4},\frac{1}{2})$
Hence B is the correct answer.
answered Apr 8, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...