logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Conic Sections
0 votes

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbola $\; 16x^2-9y^2=576$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
Given $\; 16x^2-9y^2=576.$ Dividing by $576 \rightarrow \large\frac{16}{576}$$a^2-\large\frac{9}{576}$$y^2=1 \rightarrow \large\frac{x^2}{36} $$-\large\frac{y^2}{64}$$=1$
On comparing the given equation with the standard equation of a hyperbola, we get:
$\quad a = 6, b = 8$
Since $a^2+b^2 = c^2 \rightarrow c = \sqrt{36+64} = \sqrt {100} = 10$
1. Coordinates of Foci $ = (\pm 10, 0)$
2. Coordinates of Vertices $= (\pm 6, 0)$
3. Eccentricity $e = \large\frac{c}{a} $$=\large\frac{10}{6}$$=\large\frac{5}{3}$
4. Latus Rectum $=\large\frac{2b^2}{a}$$ = \large\frac{2\times 8^2}{6} $$= \large \frac {64}{3}$
answered Apr 8, 2014 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...