Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

A card from a pack of 52 playing cards is lost. Two cards are drawn from the remaining cards and found to be both spade. (i) Find the probability of lost card being a spade card.(ii)While playing in ground you found a purse containing rupees and some other documents,what will you do?

$\begin{array}{1 1} \frac{1}{50} \\\frac{11}{50} \\ \frac{21}{50} \\ \frac{31}{50}\end{array} $

Can you answer this question?

1 Answer

0 votes
Solution :
A= last card is spade
B= not spade
$P(A) = \large\frac{13}{52} =\frac {1}{4}$
$P(B) = \large\frac{39}{52} =\frac {3}{4}$
$\in $= 2 cards drawn are spade
$P \bigg( \large\frac{\in}{A} \bigg) =\bigg( \large\frac{12}{51} \bigg) \times \bigg( \large\frac{11}{50} \bigg) =\large\frac{132}{2550}$
$P \bigg( \large\frac{\in}{B} \bigg) =\bigg( \large\frac{13}{51} \bigg) \times \bigg( \large\frac{12}{50} \bigg) =\large\frac{156}{2550}$
$P\bigg(\large\frac{A}{\in}\bigg)= \large\frac{P(\Large\frac{\in}{A}) P(A)}{P(A)P(\Large\frac{\in}{A})+ P(\Large\frac{\in}{B} ) \normalsize P(B)}$
$\qquad= \large\frac{ \Large\frac{132}{2550} \times \large\frac{1}{4}}{\Large\frac{132}{2550 \times 4 } + \Large\frac{156 \times 3 }{2550 \times 4}}$
$\qquad= \large\frac{132}{132+468}$
$\qquad= \large\frac{132}{600}$
$\qquad= \large\frac{11}{50}$
answered Feb 16 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App