logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Locus of centriod of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$ and $(1,0)$ where t is a parameter is

$\begin{array}{1 1}(A)\;(3x+1)^2+(3y)^2=a^2-b^2 \\(B)\;(3x-1)^2+(3y)^2=a^2-b^2 \\(C)\; (3x-1)^2+(3y^2)=a^2+b^2 \\(D)\;(3x+1)^2+(3y)^2=a^2+b^2 \end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
$x=\large\frac{a \cos t+ b \sin t+1}{3}$
$\qquad= a \cos t + b \sin t =3x-1$
$y= \large\frac{a \sin t- b \cos t}{3}$
$\quad= a \sin t - b \cos t=3y$
squaring and adding we get,
$3(x-1)^2+(3y)^2=a^2+b^2$
Hence C is the correct answer.
answered Apr 8, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...