Ask Questions, Get Answers

Want to ask us a question? Click here
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Thermodynamics
0 votes

$\;l_{1}\;$ and $\;l_{2}\;$ are the lengths of two rods at $\;0^{0}C\;$ and have coefficients of linear expansion $\;\alpha_{1}\;$ and $\;\alpha_{2}\;$ respectively . If the difference between the lengths X is the same at all temperatures then $\;l_{1}\;$ is

$(a)\;\large\frac{\alpha_{2}\;x}{\alpha_{1} -\alpha_{2}}\qquad(b)\;\large\frac{\alpha_{1}\;x}{\alpha_{1} -\alpha_{2}}\qquad(c)\;\large\frac{\alpha_{2}}{\alpha_{1}}\;x\qquad(d)\;\large\frac{\alpha_{1}}{\alpha_{2}}$

Can you answer this question?

1 Answer

0 votes
Answer : $\;\large\frac{\alpha_{2}\;x}{\alpha_{1} -\alpha_{2}}$
Explanation :
$l_{1}^{'} = l_{1} \;(1 + \alpha_{1} \bigtriangleup t)$
$l_{2}^{'} =l_{2}\; (1 + \alpha_{1} \bigtriangleup t)$
$l_{1}^{'} - l_{2}^{'} = (l_{1} + l_{2}) + (l_{1} \alpha_{1} -l_{2} \alpha_{2}) \; \bigtriangleup t$
$x =x + (l_{1} \alpha_{1} + l_{2} \alpha_{2}) \; \bigtriangleup t$
$l_{1} \alpha_{1} = l_{2} \alpha_{2}$
Therefore , $\rho_{1} = \large\frac{\alpha_{2}}{\alpha_{1}} l_{2} = \large\frac{\alpha_{2}}{\alpha_{1}} (l_{1} -x)$
$\rho_{1} = \large\frac{\alpha_{2} x}{\alpha_{1} - \alpha_{2}} x $
answered Apr 8, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App